Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(1): e0356723, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078717

RESUMO

IMPORTANCE: The bacterial pathogen Pseudomonas aeruginosa is responsible for a variety of chronic human infections. Even in the absence of identifiable resistance mutations, this pathogen can tolerate lethal antibiotic doses through phenotypic strategies like biofilm formation and metabolic quiescence. In this study, we determined that P. aeruginosa maintains greater metabolic activity in the stationary phase compared to the model organism, Escherichia coli, which has traditionally been used to study fluoroquinolone antibiotic tolerance. We demonstrate that hallmarks of E. coli fluoroquinolone tolerance are not conserved in P. aeruginosa, including the timing of cell death and necessity of the SOS DNA damage response for survival. The heightened sensitivity of stationary-phase P. aeruginosa to fluoroquinolones is attributed to maintained transcriptional and reductase activity. Our data suggest that perturbations that suppress transcription and respiration in P. aeruginosa may actually protect the pathogen against this important class of antibiotics.


Assuntos
Levofloxacino , Infecções por Pseudomonas , Humanos , Levofloxacino/farmacologia , Levofloxacino/metabolismo , Pseudomonas aeruginosa/metabolismo , Escherichia coli/genética , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana
2.
Artigo em Inglês | MEDLINE | ID: mdl-36845830

RESUMO

Antibiotic resistance is a major danger to public health that threatens to claim the lives of millions of people per year within the next few decades. Years of necessary administration and excessive application of antibiotics have selected for strains that are resistant to many of our currently available treatments. Due to the high costs and difficulty of developing new antibiotics, the emergence of resistant bacteria is outpacing the introduction of new drugs to fight them. To overcome this problem, many researchers are focusing on developing antibacterial therapeutic strategies that are "resistance-resistant"-regimens that slow or stall resistance development in the targeted pathogens. In this mini review, we outline major examples of novel resistance-resistant therapeutic strategies. We discuss the use of compounds that reduce mutagenesis and thereby decrease the likelihood of resistance emergence. Then, we examine the effectiveness of antibiotic cycling and evolutionary steering, in which a bacterial population is forced by one antibiotic toward susceptibility to another antibiotic. We also consider combination therapies that aim to sabotage defensive mechanisms and eliminate potentially resistant pathogens by combining two antibiotics or combining an antibiotic with other therapeutics, such as antibodies or phages. Finally, we highlight promising future directions in this field, including the potential of applying machine learning and personalized medicine to fight antibiotic resistance emergence and out-maneuver adaptive pathogens.

3.
J Appl Microbiol ; 132(6): 4020-4032, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35332984

RESUMO

AIMS: Bacterial persisters are rare phenotypic variants in clonal bacterial cultures that can endure antimicrobial therapy and potentially contribute to infection relapse. Here, we investigate the potential of leveraging microbial interactions to disrupt persisters as they resuscitate during the post-antibiotic treatment recovery period. METHODS AND RESULTS: We treated stationary-phase E. coli MG1655 with a DNA-damaging fluoroquinolone and co-cultured the cells with probiotic E. coli Nissle following antibiotic removal. We found that E. coli Nissle reduced the survival of fluoroquinolone persisters and their progeny by over three orders of magnitude within 24 h. Using a bespoke H-diffusion cell apparatus that we developed, we showed that E. coli Nissle antagonized the fluoroquinolone-treated cells in a contact-dependent manner. We further demonstrated that the fluoroquinolone-treated cells can still activate the SOS response as they recover from antibiotic treatment in the presence of E. coli Nissle and that the persisters depend on TolC-associated efflux systems to defend themselves against the action of E. coli Nissle. CONCLUSION: Our results demonstrate that probiotic bacteria, such as E. coli Nissle, have the potential to inhibit persisters as they resuscitate following antibiotic treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacterial persisters are thought to underlie chronic infections and they can lead to an increase in antibiotic-resistant mutants in their progenies. Our data suggest that we can leverage the knowledge we gain on the interactions between microbial strains/species that interfere with persister resuscitation, such as those involving probiotic E. coli Nissle and E. coli MG1655 (a K-12 strain), to bolster the activity of our existing antibiotics.


Assuntos
Proteínas de Escherichia coli , Probióticos , Antibacterianos/farmacologia , Escherichia coli , Fluoroquinolonas/farmacologia , Probióticos/farmacologia
4.
Microorganisms ; 9(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34835403

RESUMO

Antibiotic persistence is a phenomenon in which rare cells of a clonal bacterial population can survive antibiotic doses that kill their kin, even though the entire population is genetically susceptible. With antibiotic treatment failure on the rise, there is growing interest in understanding the molecular mechanisms underlying bacterial phenotypic heterogeneity and antibiotic persistence. However, elucidating these rare cell states can be technically challenging. The advent of single-cell techniques has enabled us to observe and quantitatively investigate individual cells in complex, phenotypically heterogeneous populations. In this review, we will discuss current technologies for studying persister phenotypes, including fluorescent tags and biosensors used to elucidate cellular processes; advances in flow cytometry, mass spectrometry, Raman spectroscopy, and microfluidics that contribute high-throughput and high-content information; and next-generation sequencing for powerful insights into genetic and transcriptomic programs. We will further discuss existing knowledge gaps, cutting-edge technologies that can address them, and how advances in single-cell microbiology can potentially improve infectious disease treatment outcomes.

5.
Cancer Cell ; 39(11): 1531-1547.e10, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34624218

RESUMO

Cancer-associated fibroblasts (CAFs) are highly heterogeneous. With the lack of a comprehensive understanding of CAFs' functional distinctions, it remains unclear how cancer treatments could be personalized based on CAFs in a patient's tumor. We have established a living biobank of CAFs derived from biopsies of patients' non-small lung cancer (NSCLC) that encompasses a broad molecular spectrum of CAFs in clinical NSCLC. By functionally interrogating CAF heterogeneity using the same therapeutics received by patients, we identify three functional subtypes: (1) robustly protective of cancers and highly expressing HGF and FGF7; (2) moderately protective of cancers and highly expressing FGF7; and (3) those providing minimal protection. These functional differences among CAFs are governed by their intrinsic TGF-ß signaling, which suppresses HGF and FGF7 expression. This CAF functional classification correlates with patients' clinical response to targeted therapies and also associates with the tumor immune microenvironment, therefore providing an avenue to guide personalized treatment.


Assuntos
Fibroblastos Associados a Câncer/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Fator 7 de Crescimento de Fibroblastos/genética , Fator de Crescimento de Hepatócito/genética , Neoplasias Pulmonares/patologia , Biópsia , Fibroblastos Associados a Câncer/química , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Medicina de Precisão , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Regulação para Cima
6.
Antimicrob Agents Chemother ; 65(8): e0028121, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34097492

RESUMO

Bacteria have a repertoire of strategies to overcome antibiotics in clinical use, complicating our ability to treat and cure infectious diseases. In addition to evolving resistance, bacteria within genetically clonal cultures can undergo transient phenotypic changes and tolerate high doses of antibiotics. These cells, termed persisters, exhibit heterogeneous phenotypes; the strategies that a bacterial population deploys to overcome one class of antibiotics can be distinct from those needed to survive treatment with drugs with another mode of action. It was previously reported that fluoroquinolones, which target DNA topoisomerases, retain the capacity to kill nongrowing bacteria that tolerate other classes of antibiotics. Here, we show that in Escherichia coli stationary-phase cultures and colony biofilms, persisters that survive treatment with the anionic fluoroquinolone delafloxacin depend on the AcrAB-TolC efflux pump. In contrast, we did not detect this dependence on AcrAB-TolC in E. coli persisters that survive treatment with three other fluoroquinolone compounds. We found that the loss of AcrAB-TolC activity via genetic mutations or chemical inhibition not only reduces delafloxacin persistence in nongrowing E. coli MG1655 or EDL933 (an E. coli O157:H7 strain), but it limits resistance development in progenies derived from delafloxacin persisters that were given the opportunity to recover in nutritive medium following antibiotic treatment. Our findings highlight the heterogeneity in defense mechanisms that persisters use to overcome different compounds within the same class of antibiotics. They further indicate that efflux pump inhibitors can potentiate the activity of delafloxacin against stationary-phase E. coli and block resistance development in delafloxacin persister progenies.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Proteínas de Transporte , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fluoroquinolonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...